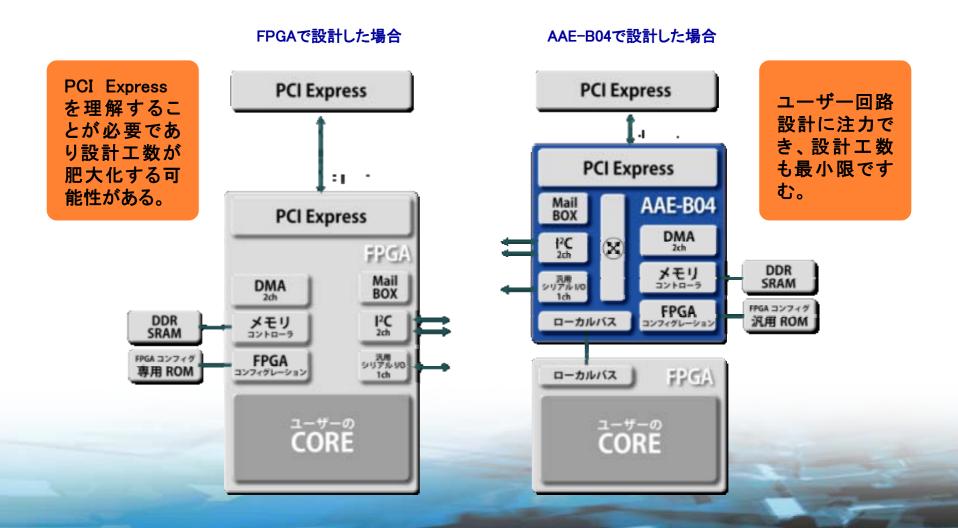
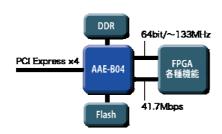
PCI Express Bridge LSIのご紹介 AAE-B04

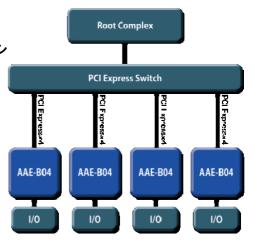

株式会社アバールデータ

Agenda

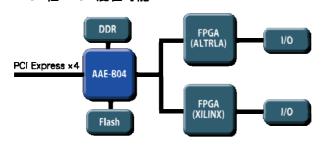
- ●特長
- ●概略仕様
 - 各機能の説明
- ●システム構築例
 - 転送モードの説明
- ●性能
 - 測定結果
- 初期化ツール
- ●搭載ボードのご紹介
 - APX-742/AXM-741/APX-3312製品
- ●まとめ


特長 I PCI Expressを意識せずにアドインカード設計可能

特長 II 様々なエンドポイントIO


基本構成

AAE-B04を中心とした基本的な構成。


エンドポイントシステム

大規模な高速データ転送システム

異なる機能のFPGAが混在

コンフィギュレーション機能はALTERA / XILINX / LATTICE社FPGA混在可能

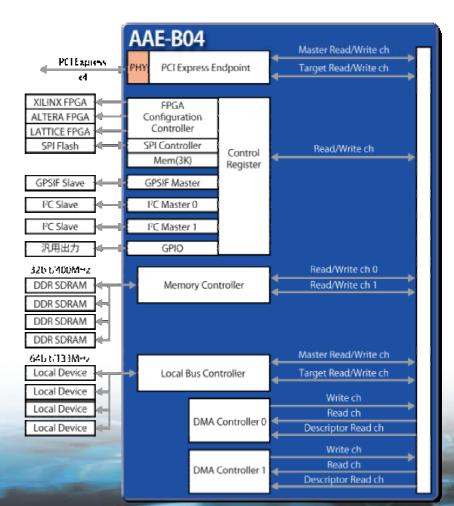
PCI Express x8システム

X8のカード構成。

PCI Express x4 AAE-804 FPGA AAE

インテリジェントIO

CPUを搭載した構成。 FPGAのゲート数に余裕 があればソフトCPU。


特長皿 PCI Expressを最大限に

- PCI-Express Specification Rev 1.0a ×4に対応
- 高速なLocal Bus: 64bit/133MHz
- 最大1GByteの大容量DDRメモリコントローラ
- DMAコントローラを2チャンネル搭載
- XILINX社、ALTERA社、Lattice社製のFPGAコンフィグレーション機能
- 最大64MByteのSPI Flashメモリコントローラ
- 8bitの汎用入出力を搭載 (GPIO)
- 2chのI2Cバスマスターを搭載
- 汎用シリアルバス搭載 (GPSIF)
- 最小アクセスレイテンシの3KByteメモリ内蔵

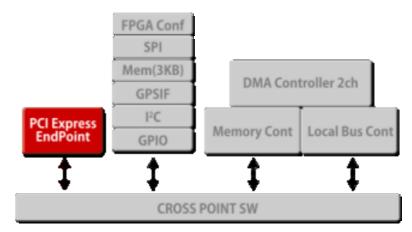
概略仕様

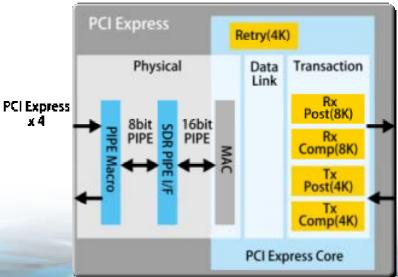
■ AAE-BO4 の主な仕様

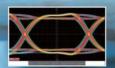
■ AAC-DU→ V王徳江塚				
PCI Express Endpoint	規格	PCI ExpressTM Base Specification Revision 1.0a		
	レーン数	4 レーン		
	Virtual Channel (VC)	VC0のみ(1つ)		
	バッファサイズ	受信系:Posted / Completion Data:各 BKByte 送信系:Posted / Completion Data / Retry:各 4KByte		
	Maximum Payload Size	1KByte		
高速メモリ I/F	対応メモリ	DDR200~400 容量:128Mbit~1Cbit (メモリチップ辺り) 16MByte~1GByte (総容量)		
	バス幅	32bit		
	データ帯域	0.8~ 1.6GByte/sec(ピーク性能)		
	先読みメモリ	512Byte × 4		
Local I/F	信号レベル	2.5V-LVTTL Single End		
	バス幅	64bit		
	バスクロック	133MHz(MAX)		
	データ帯域	1.06GByte/Sec(ピーク性能)		
FPGA Configuration Port	対応モード	ALTERA 社 FPGA 向け:PS Mode XILINX 社 FPGA 向け:Slave Serial Mode Lattice 社 FPGA 向け:Slave Serial Mode		
SPI Memory Port	対応メモリ	品種:SPI Flash Memory 容量:16Kbit~128Mbit (メモリチップ辺り) 2KByte~64MByte (総容量)		
その他機能	汎用入出力 (GPIO)	8 bit		
	汎用シリアルバス (GPSIF)	1 Port (5Mbps~41.7Mbps)		
	PCバス	2 Port		
一般仕様	Package	672pin EPBGA(☐ 27mm, 1mm-pitch)		
	動作周囲温度	0 ~ 70°C		
	電源入力	+3.3V 20(mA) MAX +2.5V 415(mA) MAX +1.2V 2.2(A) MAX		

概略仕様 PCI Express

- •PCI Express Rev 1.0a準拠
- ・デバイスタイプ: PCI Express Endpoint
- ・レーン数:1~4レーン
- •Max Payload Size:128、256、512、1024Byteをサポート
- ・高速なデータ転送を実現


理論転送速度:1GByte/秒(最大ピーク値)


実効転送速度(DMA使用時、弊社測定環境において)


Local Bus to System Memory: 890MByte/秒

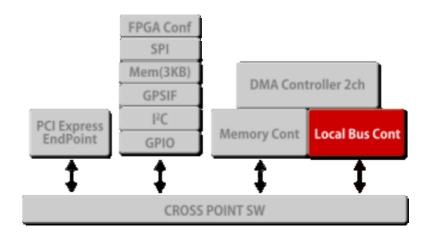
System Memory to Local Bus: 810MByte/秒

- ·MSI割り込み対応
- Advanced Error Reporting対応
- ・レーン極性反転(Polarity Inversion)サポート
- ・レーン順入替(Lane Reversal)機能サポート

概略仕様 Local Bus

●FPGAに実装が容易なシンプルプロトコル

●信号レベル: 2.5V LVTTL

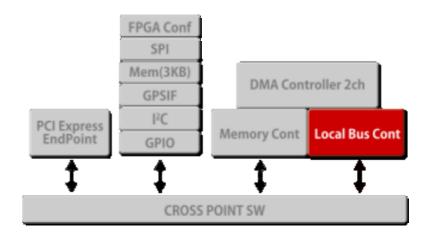

●データ帯域:1.06GByte/Sec

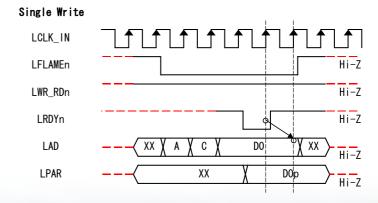
●バス幅: 64bit

●クロック: 133MHz(max)

●5出力のクロックドライバ内蔵

(出力周波数範囲:25MHz~133MHz)

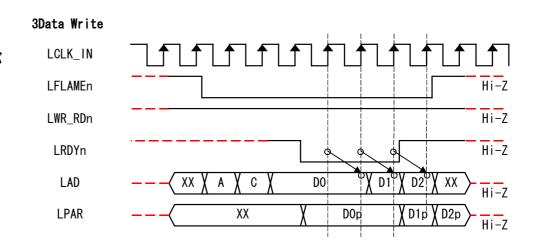

概略仕様 Local Bus I (基本プロトコル)

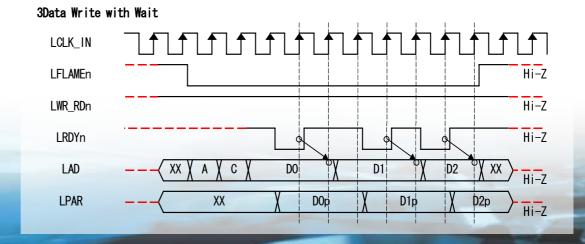

アドレス・コマンド・データの3フェーズで構成

アドレスフェーズマスタがアドレスを出力

コマンドフェーズ ・マスタがコマンドを出力

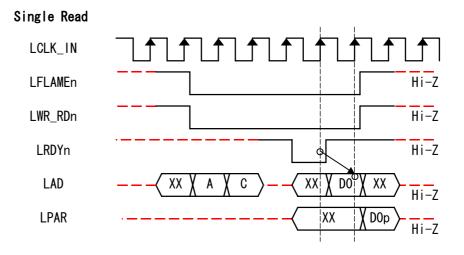
データフェーズ ・データソースがデータを出力

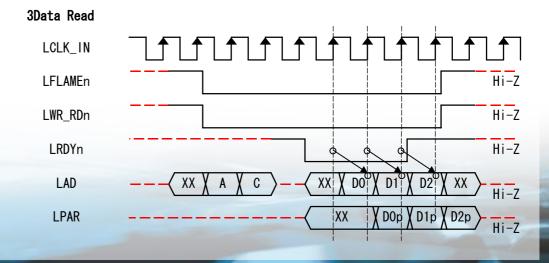



コマンドフォーマット

bit	3124	23	2217	160
info	Byte Enable [70]	64bit Cycle	-	Pay Load Size

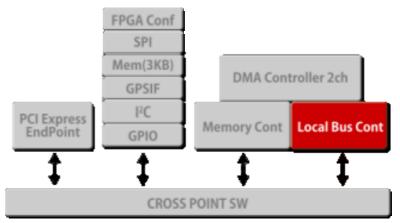
概略仕様 Local Bus Ⅱ (Write Timing)

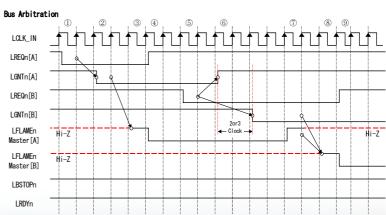

Write時のデータフェイズではマスターにより常に有効なデータがLAD上に出力され、ターゲットによりLRDYn信号がアサートされた次のクロックサイクルでデータが転送されます。



概略仕様 Local Bus Ⅲ (Read Timing)

Read 時のデータフェイズでは LADが、ターゲットにより出力 され、LRDYn 信号がアサート された次のクロックサイクルで データが転送されます。





概略仕様 Local Bus IV(アービトレーション)

バスアービトレーションはLREQn、LGNTn、LFLAMEn、LBSTOPn、LRDYn信号を使用

- ・マスタはLREQn信号によりバス権を要 求
- アービタはLGNTn信号によりバス権を 与える
- バス権を与えられたマスタは、LFLAMEn、 LBSTOPn、LRDYn信号が全てネゲートされている時のみバスを使用開始可能

概略仕様 Local Bus V(サイクル中断)

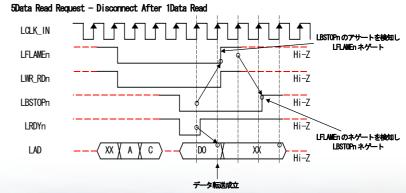
- ①複数マスタが同時にバスを使用したい時
- ②ターゲットがマスタの要求した処理をすぐに実行出来ない時に使用する。

マスタ主導のサイクル中断 最初に要求した転送サイズ到達前にLFAMEn 信号をネゲートする

ターゲット主導のサイクル中断 BSTOPn信号をアサートする。

注意事項

- a) PCI Expressからの要求を長時間実行しない事は避ける CPU等から、発行された要求を長時間実行出来ないと、 CPUまたはチップセットがハングアップする可能性があります。
- b) BSOTPn信号アサート時は必ず中断処理を実行する BSTOPnがアサートされた際、相手側のマスタは必ずサイクル を中断する必要があります。 (AAE-B04にはBSTOPnの出力設定があります。)


FPGA Conf
SPI
Mem(3KB)
GPSIF

PCI Express
EndPoint

GPIO

Memory Cont
Local Bus Cont

CROSS POINT SW

概略仕様 DDR SDRAMコントローラ

MemoryコントローラはDDRメモリ及び先読み キャッシュの制御を行っています。"先読み/ラ イトスルーキャッシュ"を4系統搭載して、読み 出しの高速化を計っています。 PCI Express EndPoint GPIO

CROSS POINT SW

FPGA Conf
SPI
DMA Controller 2ch
DMA Controller 2ch
Local Bus Cont

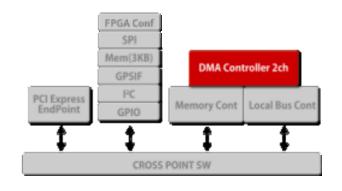
FIFOモード時は、メモリ全体がFIFOとして扱えるよう制御を行います。また、DMA コントローラと連携し、FIFOのフロー制御を行います。

使用可能なDDR Memory

容量	128M~1Gbit/Chip
総容量	16MByte(min) →128Mbit 32bit幅×1個 1GByte(Max) →1Gbit 8bit幅×8個
データ幅	8~32bit/Chip ※本LSIとの接続バス幅は、必ず32bitにする必要があります。
スピード	DDR200~DDR400 1Bank時 DDR200~DDR333 2Bank時

概略仕様 DMAコントローラ I

DMAコントローラは、2つの異なったブロック間のデータ転送を行う機能です。本LSIには2チャンネルのDMAコントローラを内蔵しています。


以下の2つの転送モードに対応

One Shot Mode

転送元/転送先を指定して転送を行い、転送終了でDMA完了となるモードです。外部から、転送元 /転送先を転送の都度、設定を行う必要が有ります。

Scatter/Gather Mode

DMAの転送元/転送先/サイズ等が書かれた構造体(Descriptor)を使用し、異なった空間やアドレスに連続して転送を行うことが可能なモードです。仮想メモリを使用したOS等で、不連続なアドレス空間が転送元/転送先となる場合に有効です。

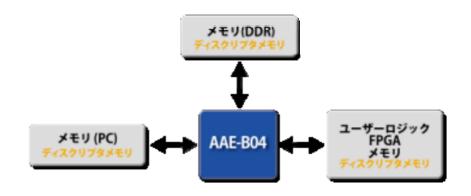
DMA転送元/転送先としては以下の領域を指定可能です。なお、同一のエリアを転送元/転送先に指定する事は禁止です。

- -PCI Bus (64bit アドレス空間指定可能)
- ·Local Bus
- DDR Memory(FIFO)
- Register

Descriptor読み出し元としては、以下の領域を指定可能です。

- PCI Bus (64bit アドレス空間指定可能)
- ·Local Bus
- DDR Memory(FIFO)

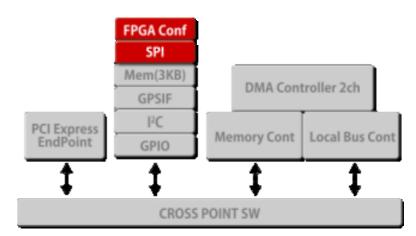
DMAの転送単位は8Byteとなります。


概略仕様 DMAコントローラ II (ディスクリプタ)

ディスクリプタは、転送元/転送先/サイズ等を指定する為の構造体です。

"Scatter/Gather Mode"時、DMAコントローラは、
"デスクリプタ読み出し→DMA転送"を繰り返し行います。

ディスクリプタは、32bitアドレス空間内の転送を実行可能な"Basic Descriptor"と、64bit空間をサポートした、"64bit Descriptor"の2種類が存在します。


ディスクリプタの先読みキャッシュを内蔵しており、 DMAチャンネル毎に4個のディスクリプタテーブル を先読み可能です。

通常は管理が容易なPCサイドのメインメモリにアサインされる

概略仕様 SPI Flashメモリコントローラ(FPGAコンフィグレーション)

SPI Flash/FPGA Configコントローラは、SPI Flashへの読み書き及び、 XILINX/Lattice/ALTERA社のFPGA コンフィグレーションを行う機能です。

使用可能なSPI Memoryは以下のとおりです。

容量	1M~128Mbit/Chip	
スピード	25Mbps(Max) ~ 0.98Mbps(Min)	
Device数	4個(Max)	
電源電圧	3.3V	

3FF_FFFFh

000_0400h 000_03FFh

000_0000h

FPGA Configuration Data

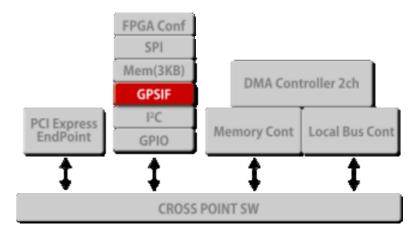
/User Data

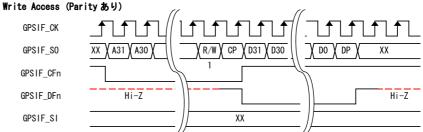
Chip Initialize Data

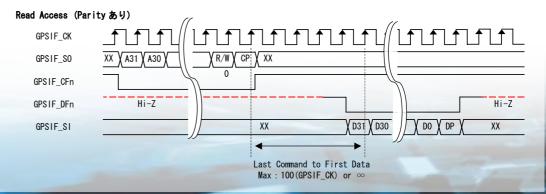
コンフィグレーション可能なXILINX/Lattice FPGAの仕様は以下のとおりです。

仕様	Slave Serial Configuration	
スピード	25Mbps(Max) ~ 0.98Mbps(Min)	
ファイル形式	Xilinx社用 bin形式 Lattice社用 bit形式	
電源電圧	2.5V(Configuration 系の端子のみ左記電圧で動作すれば可)	

コンフィグレーション可能なALTERA FPGAの仕様は以下のとおりです。

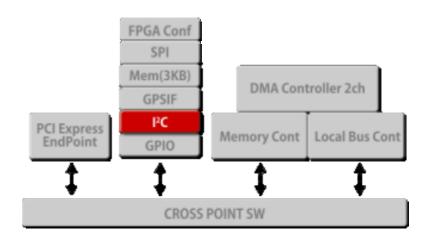

容量	Passive Serial Configuration(PS)	
スピード	25Mbps(Max) ~ 0.98Mbps(Min)	
ファイル形式	rbf形式	
電源電圧	2.5V(Configuration 系の端子のみ左記電圧で動作すれば 可)	


概略仕様 GPSIF


シンプルプロトコルのシリアルI/F 本LSIはマスターとして動作

Local Busをデータ転送で使用 している場合も、PCI側から Local側へアクセス可能な経路 を提供

動作クロックは5M~41.7MHz



概略仕様 I2Cバスマスタ

I²C Bus マスターポート: 2ポート

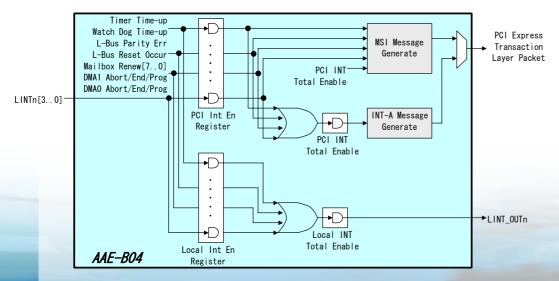
電源監視、I/Oエキスパンダなどの市販ICを接続可能。

動作クロックは10K~400Kbpsの範囲でレジスタにより設定可能です。

動作クロックと、I²C仕様の対応

動作クロック	I ² C仕様
400Kbps	FAST-MODE
200Kbps	-
100Kbps	STANDARD-MODE
50Kbps	-
10Kbps	-

I²Cバスの標準負荷は400pF以下


概略仕様 割込み

PCI/Localに対して割り込みを出力する為の機能

PCIバス割り込み:以下の2モードをサポート

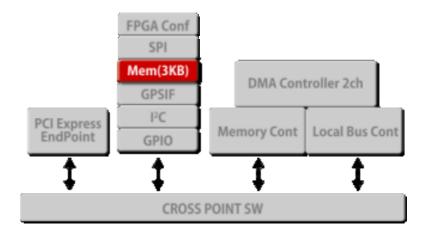
- -Lagacy PCI 互換モード(INT A)
- -MSI(Massage Signaled Interrupt)モード

要因ごとにマスクビットが用意されており、割り込み許可/禁止を任意に設定可能です。

Legacy PCI 互換モード

INT(A,B,C,D)信号を使用した、PCI互換の割り込みモードです。本LSIからは、全ての割り込み要因の論理和が、INTAとして出力されます。 (INTB,C,Dは使用しません。)

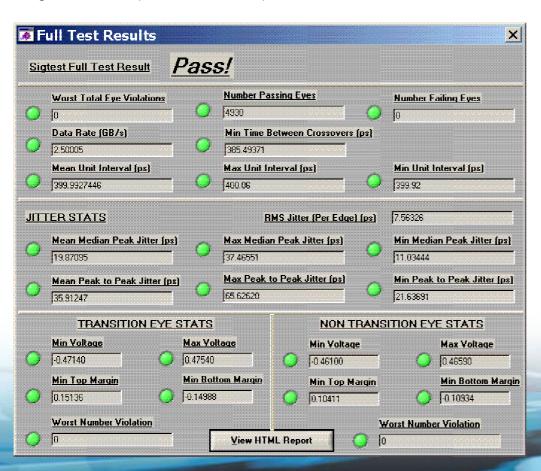
PCI Express上では、割り込み信号が仮想化されメッセージとして伝送されます。割り込みコントローラへは、PCI Express Root Complexを経由して、通常のINTAとして通知される為、通常のPCI割り込み処理と同様に扱えます。

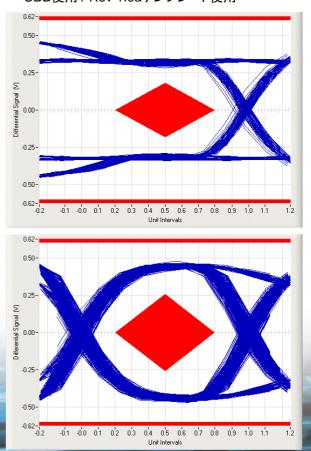

MSIモード

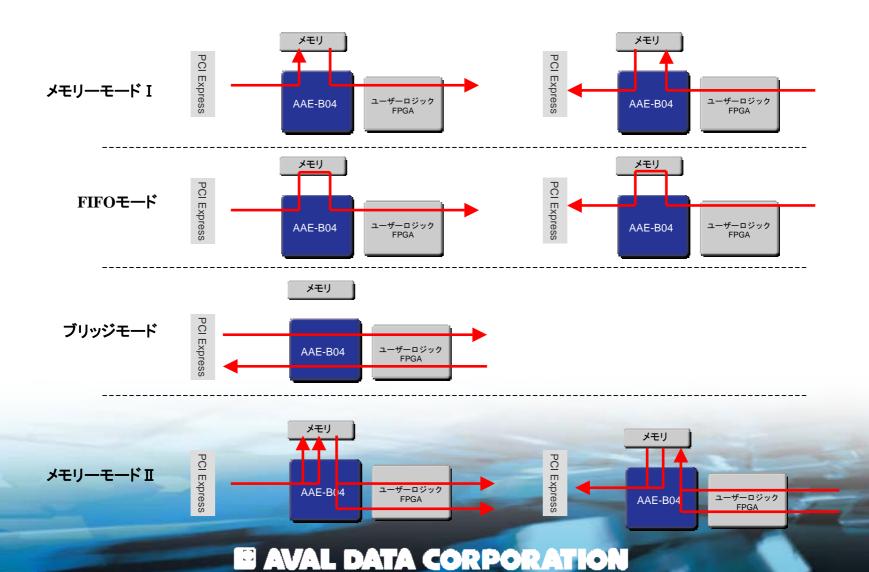
割り込みをメッセージ化して送る事を前提とした モードです。本モードでは、複数の割り込みメッ セージを送信する事が可能な為、割り込みを受 けた側で割り込み要因の特定を迅速に行えます。 本モードを使用する為には、ソフトウェアでの対 応が必要です。

本LSIからは8種のMSIメッセージを送信する事を要求します。但し、送信可能な割り込みメッセージの数はシステム側から設定されます。

概略仕様 3KBytes内蔵メモリ

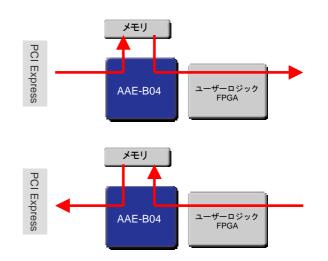

PCI Express、Local Bus双方からのアクセス可能な内蔵メモリ。


- 低レイテンシでアクセス可能
- ・ステータス、メッセージ等の受け渡 しに使用


コンプライアンステスト

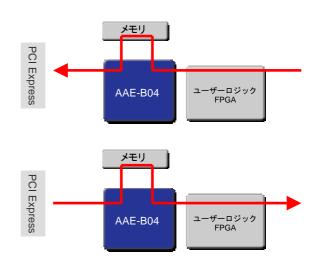
Sigtest 2.1結果 (Rev 1.0a, Lane 0)

Lane 0差動波形 CBB使用 / Rev 1.0aテンプレート使用



メモリーモード I

DDRメモリを経由してPCI Expressと、Local Bus間でデータの受け渡しを行う使用方法です。


本LSIにはDMAが2chあるので、メモリ-PCI間、メモリ-Local間それぞれでDMAが使用可能です。

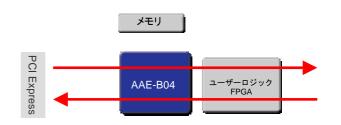
FIFOモード

DDRメモリをFIFOとして利用しPCI Expressと、Local Bus 間でデータの受け渡しを行う使用方法です。

本LSIにはDMAが2chあるので、メモリーPCI間、メモリー Local間それぞれでDMAが使用可能です。また、FIFOモー ドでDMAを使用する場合、FIFOのオーバー/アンダーラ ン制御をDMAコントローラが行います。

メモリーモードⅡ

DDRメモリを経由してPCI Expressと、Local Bus間でデータの受け渡しを行う使用方法です。メモリモード I との違いはメモリの領域を複数に分割し、それぞれ非同期に動作する事を想定している点です。


使用例

- ・Local Busの先には、非同期動作の複数台のカメラが 接続されている。
- ・カメラから入力された画像は非同期にDDRメモリに書き込まれる。
- ・DDRメモリに取り込まれた画像データは、順次メインメモリにコピーする。(2chのDMAを順次使用するなど)

ブリッジモード

DDRメモリを使用せず、PCI ExpressとLocal Bus間で直接データの受け渡しを行う使用方法です。

メモリを使わない為、より安価にシステム構築が可能です。

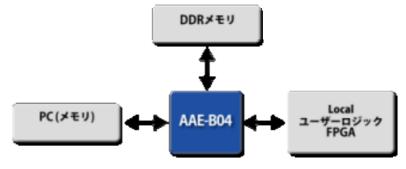
使用例

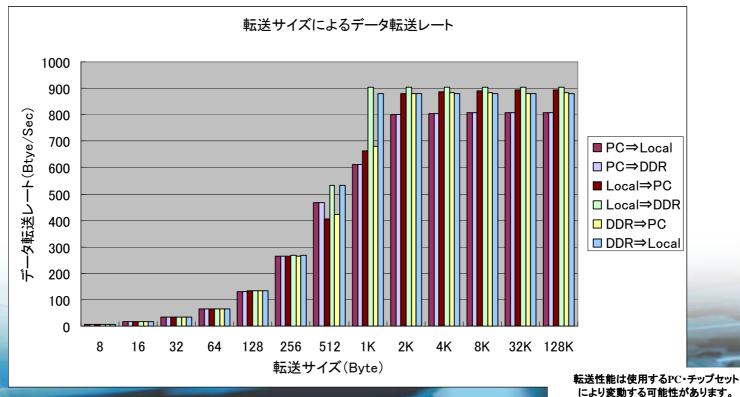
- ・データ帯域に十分余裕のあるシステム。
- リアルタイム性の低いデータ転送。

性能 パフォーマンスアップの仕掛

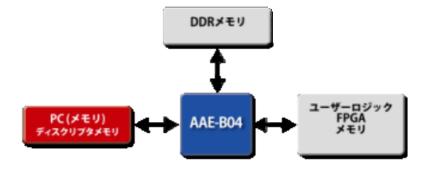
- ●クロスポイントスイッチ(Cross Point SW)の採用
- ●ディスクリプタ先読みキャッシュの採用
- ●DDRメモリ先読みキャッシュの採用
- ●DDRメモリFIFOモード
- ●信号によるDMA開始モード
- ●ローカルバスはパラレル/シリアル同時動作

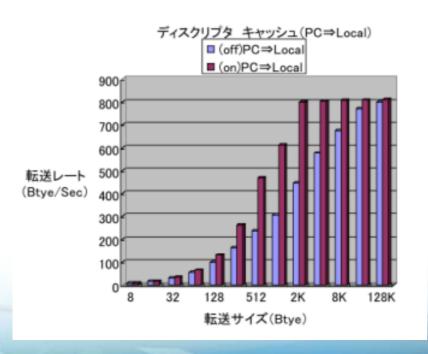
性能 AAE-B04の実効値

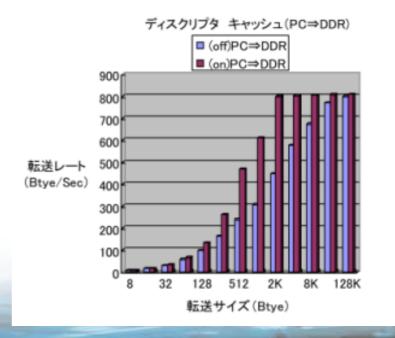

本測定値は、AAE-B04を搭載したアバールデータ社製基板を使用し、PCI Expressのデータ転送能力を把握してして頂くために行ったもので、測定値自体を弊社で保障するものではありませんので、予めご了承載くようお願いいたします。


	PC	MCH	ICH	MCH接続(I	Mbyte/sec)	ICH接続(M	(byte/sec)
				Read	Write	Read	Write
1	A社_PC	945G	ICH7	744	682	396	622
2	B社_PC1	955X	ICH7			760	655
3	B社_PC2	975X	ICH7			759	640
4	B社_PC3	5000X	631xESB	845	690	771	705
5	B社_PC4	5000X	631xESB	845	690	771	705
6	B社_PC5	E7221	ICH6	428	669		
7	B社_PC6	E7230	ICH7	759	706	759	657
8	B社_PC7	3000	ICH7	758	705	758	654
9	B社_PC8	E7230	ICH7	745	690		
10	B社_PC9	3000	ICH7	759	706		
11	B社_PC10	5000V	631xESB	844	694	769	704
12	B社_PC11	5000P	631xESB	844	689	769	704
13	C社_PC	E7520	ICH5	759	709		
14	D社_PC	X38	ICH9				
15	E社_PC1	975X	ICH7			758	603
				Slo	t-A	Slo	t-B
20	E社_PC2	HT-2100	HT-1000	810	810	894	810
21	F社_PC	nFP3600	nFP3050	760	800	760	800

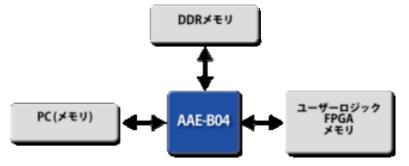
PCI Expressはチップセットのクレジット数、及びペイロードサイズで転送性能が左右されます。

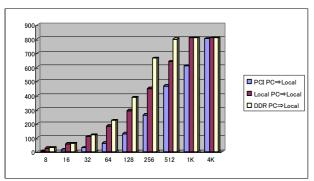

<u>測定条件</u> データサイズ: 2KB/Descriptor 総転送サイズ: 1MB

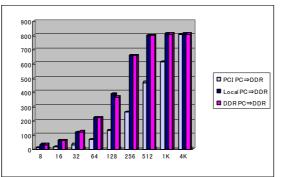

性能 データ転送サイズの比較(実測値)

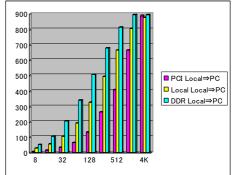


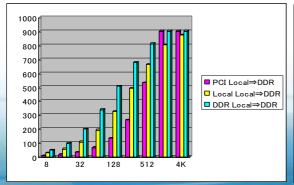
性能 ディスクリプタキャッシュの有効性 I (実測値)

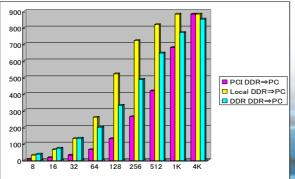


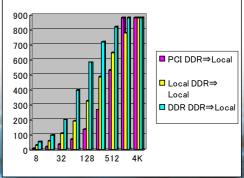

転送サイズ 128KB以下で有効

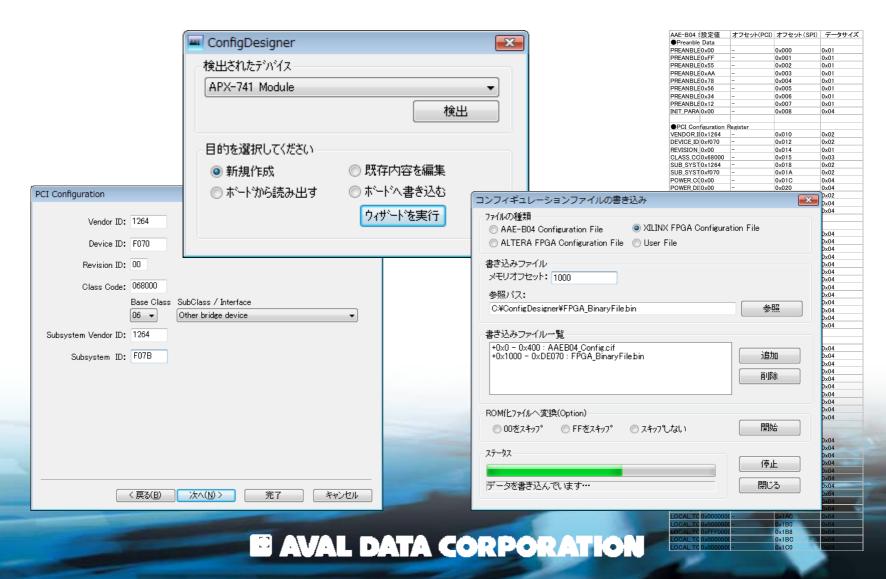

転送性能は使用するPC・チップセット により変動する可能性があります。


E AVAL DATA CORPORATION


性能 ディスクリプタ メモリの有効性Ⅱ(実測値)







AAE-B04初期化ツールの紹介

AAE-B04搭載ボードの紹介 I アバールデータ製APX-742/AXM741

APX-741のブロック図

AAE-B04搭載ボードの紹介 II アバールデータ製APX-3312

Base Configuration Camera Link規格のライン/エリアカメラに対応した PCI Express(X4)バス画像入力ボードです。カメラ2台を独立制御可能です。

カメラ電源供給を可能とするPoCL規格にも対応しており、エリア/ ライン問わず幅広いカメラに接続できます。サブパネルにて外部トリ ガ及びエンコーダ入力やストロボタイミング出力等をサポートしてお り、システム構築における周辺機器への接続も考慮した製品です。

■ APX-3312の主な仕様

対応カメラ	CameraLink モノクロ / カラー エリア / ラインカメラ		
画像入力	Base Configuration 20 ~ 85MHz 24bit		
同層出力	カメラ制御信号	CC1 ~ CC4	
	汎用出力	2ch、TTレオープンコレクタ(ストロボタイ ミング出力としても可)	
向無入力	外部トリガ	TTL/オープンコレクタ/推動信号 RS-422	
	エンコーダ	差動信号 RS-422 (ラインドライバ)。 A/B/Z 相、1MHz (MAX)	
	汎用入力	TTL/オープンコレクタ	
メモリ	DDR SDRAM 128MB		
システムバス	PCI Express (× 4 レーン)		
外形寸法	168mm × 107mm		

APX-3312

PCI Express Bridge LSI シリーズ

Gen 3

Gen 2

Gen 1

Gen 2 AAE-B24

Rev2.0 PCI Express x 4 (実効帯域:16Gbps) DDR-2

Local 64b/266Mbps $+ \alpha$

Gen 3 AAE-B34

Rev3.0 PCI Express x 4 (実効帯域:32Gbps) DDR-3

Local ??

2007

Gen 1

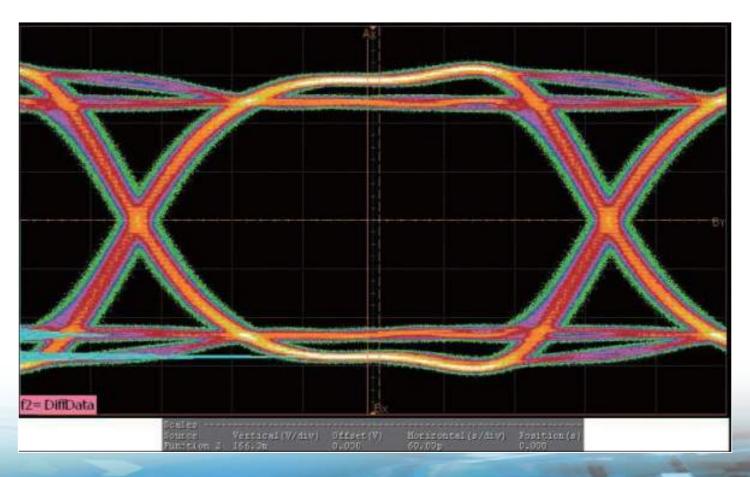
AAE-B04

Rev1.0 PCI Express x 4 (実効帯域:8Gbps) DDR400 Local 64b/133Mbps

2009

2011

まとめ


- ●設計負担低減
 - PCI Expressを熟知しなくても良い。ユーザーロジックに専念できる。
 - ドライバーサンプルの公開
- ●信頼性
 - コンプライアンステスト PASS
- ●性能
 - PCI Express アドインカードの性能を100%引き出す『仕掛け』
- ●機能の充実
 - FPGAコンフィグレーション
 - I2C /GPSIO/GPIO
 - 内蔵メモリ
- ●今後の展開
 - Gen2 Gen3 へのアプローチ

http://www.avaldata.co.jp

ありがとうございました。

AAE-B04のアイパターン

